Abstract Submitted for the MAR17 Meeting of The American Physical Society

Magnetic exchange bias effect with magnetization reversal in double perovskite $\text{Er}_2\text{CoMnO}_6$ single crystal JAE YOUNG MOON, MI KYUNG KIM, SANG HYUP OH, NARA LEE, YOUNG JAI CHOI, Yonsei Univ — We have successfully synthesized the high-quality single crystals of double perovskite $\text{Er}_2\text{CoMnO}_6$ by the conventional flux method with Bi₂O₃ flux, and have investigated their magnetic properties and magnetic exchange bias effects. The ferromagnetic order arises at $T_{\rm C}$ =63.5 K from the dominant Co^{2+} and Mn^{4+} superexchange interactions, mainly along the *c* axis. A huge increase in the temperature dependence of specific heat divided by temperature occurs due to the Er^{3+} spin ordering at $T_{\rm Er}$ =12 K. Magnetization reversal in temperature dependence of magnetic susceptibility and inverted hysteresis loop along the *c* axis in magnetic field dependence of magnetization are observed below $T_{\rm Comp}$ =3.15 K, resulted from the interaction between Er^{3+} and $\text{Co}^{2+}/\text{Mn}^{4+}$ sublattices. The exchange bias effects are exhibited in the inverted hysteresis loops, and the maximum exchange bias field of 0.3 kOe is obtained after field cooling in $H_{\rm FC}$ =0.190 kOe.

> Jae Young Moon Yonsei Univ

Date submitted: 11 Nov 2016

Electronic form version 1.4