Computational study of ideal electrolyte/anode interfaces for Na$_3$SbS$_4$/Na1 LARRY E. RUSH JR., N. A. W. HOLZWARTH, Wake Forest University — As part of an effort to develop energy storage technology based on all-solid-state Na-ion batteries, recent papers in the literature2 demonstrate the electrochemical stability of the solid electrolyte Na$_3$SbS$_4$ interfaced with a metallic Na anode. The integrity of this electrolyte/anode interface, which is essential to the success of these battery components, is attributed to the formation of a stable solid electrolyte interphase (SSEI). We report the results of a computational study of this system, using first principles methods to model ideal interfaces of Na$_3$SbS$_4$ with Na metal. The ideal interfaces were constructed from (110), (100), and (001) surfaces of tetragonal crystals of Na$_3$SbS$_4$ and Na metal in various configurations. The results show several likely components of the SSEI including a few broken Sb–S bonds and Na$_2$S groups stabilized at the outer layer of the interface.

1Supported by NSF grant DMR-1507942; thanks to Zachary D. Hood from GaTech and ORNL for introducing us to this system.