Abstract Submitted for the MAR17 Meeting of The American Physical Society

Thermodynamic implications of ²⁹Si spin impurities on scalability of silicon-based quantum computing¹ PAVEL LOUGOVSKI, NICHOLAS A. PETERS, Quantum Information Science Group, Oak Ridge National Lab — It is anticipated that ³¹P donors in silicon have the potential for realizing scalable quantum processors in analogue to classical computer $chips^2$. In classical computing, removing excess heat is a challenge that sets practical limits on performance. Here we consider what fundamental thermodynamic limits exist for the P-donor quantum computer in isotopically enriched ²⁸Si. Specifically, we consider the effect of ³¹P nuclear spin rotation on the nuclear spin dynamics of the remaining ²⁹Si impurity atoms within a single-qubit gate volume. Our simulations show that a π rotation of ³¹P nuclear spin induces ²⁹Si nuclear spin flipping resulting in an average energy decrease of the 29 Si nuclear spin bath. For a gate volume of 5 nm³ and 29 Si concentration of 800 PPM at $250\mu K$, the average energy decrease per single qubit rotation is $4.74 \times 10^{-12} eV$. This suggests that the scalability of ³¹P-donor quantum computer will not be limited by energy dissipation from single qubit control pulses into the ²⁹Si nuclear spin bath. Moreover, randomized single qubit rotation promises to be useful for cooling the ²⁹Si nuclear spin bath.

¹Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

²B. E. Kane, *Nature* **393**, 133 (1998).

Nicholas Peters Quantum Information Science Group, Oak Ridge National Lab

Date submitted: 11 Nov 2016

Electronic form version 1.4