Thermodynamic implications of 29Si spin impurities on scalability of silicon-based quantum computing1 PAVEL LOUGOVSKI, NICHOLAS A. PETERS, Quantum Information Science Group, Oak Ridge National Lab — It is anticipated that 31P donors in silicon have the potential for realizing scalable quantum processors in analogue to classical computer chips2. In classical computing, removing excess heat is a challenge that sets practical limits on performance. Here we consider what fundamental thermodynamic limits exist for the P-donor quantum computer in isotopically enriched 28Si. Specifically, we consider the effect of 31P nuclear spin rotation on the nuclear spin dynamics of the remaining 29Si impurity atoms within a single-qubit gate volume. Our simulations show that a π rotation of 31P nuclear spin induces 29Si nuclear spin flipping resulting in an average energy decrease of the 29Si nuclear spin bath. For a gate volume of 5 nm3 and 29Si concentration of 800 PPM at 250\,μK, the average energy decrease per single qubit rotation is 4.74×10^{-12}\,eV. This suggests that the scalability of 31P-donor quantum computer will not be limited by energy dissipation from single qubit control pulses into the 29Si nuclear spin bath. Moreover, randomized single qubit rotation promises to be useful for cooling the 29Si nuclear spin bath.

1Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

Nicholas Peters
Quantum Information Science Group, Oak Ridge National Lab

Date submitted: 11 Nov 2016 Electronic form version 1.4