Abstract Submitted for the MAR17 Meeting of The American Physical Society

²⁹Si NMR study of polycrystalline NaTiSi₂O₆¹ RAIVO STERN, RIHO RSTA, IVO HEINMAA, ENNO JOON, NICPB, Tallinn, ESTONIA, HAR-LYN J. SILVERLEIN, CHRISTOPHER WIEBE, Dept. of Chemistry, University of Winnipeg, CANADA — NaTiSi₂O₆ (NTSO) structure consists of quasi 1-D zig-zag chains of edge-sharing slightly distorted TiO_6 octahedrons. The chains are separated by SiO_4 tetrahedrons. At high T the distance between magnetic spin-1/2 Ti^{3+} ions in the chain is equal. At $T_c = 210$ K the compound undergoes orbital-Peierls transition. As a result, below 210 K TiO_6 chain becomes dimerized having diamagnetic singlet ground state. Neutron spectroscopy provided singlet-triplet gap value 615(35) K [*], μ SR 2 Δ =700(100) K. Our ²⁹Si magic angle spinning NMR spectra show in paramagnetic region one single resonance with paramagnetic shift K = 713 ppm at 300 K. The shift slightly increases with decreasing T and has maximum K = 796 ppm at T = 213 K. Below T_c the resonance transforms into two lines with different paramagnetic shifts. At T = 56 K the spectrum shows 2 sharp lines with diamagnetic chemical shifts -84 and -101 ppm corresponding to 2 different Si sites in the low-T unit cell. T-dependence of ²⁹Si spin-lattice relaxation T_1 in 70 K < T < 140 K follows activation type T-behavior with $E_a=300(20)$ K, which we ascribe to the splitting between the 2 lowest *d*-orbital energy levels. * H. J. Silverstein et al., PRB 90, 140402(R) (2014).

¹ETAg IUT23-7, PUT210; TK134

Raivo Stern Natl Inst of Chem Phy Bio

Date submitted: 11 Nov 2016

Electronic form version 1.4