Abstract Submitted for the MAR17 Meeting of The American Physical Society

Density propagator for many-body localization: finite size effects, transient subdiffusion, (stretched-) exponentials¹ FERDINAND EV-ERS, FELIX WEINER, Institut fr Theoretische Physik, Universitt Regensburg, GIUSEPPE DE TOMASI, SOUMYA BERA, Max-Planck-Institut fr Physik komplexer Systeme, Dresden — We investigate charge relaxation in the spin-less disordered fermionic Hubbard chain. Our observable is the time-dependent density propagator, $\Pi_{\varepsilon}(x,t)$, calculated in windows of different energy density, ε , of the many-body Hamiltonian and at different disorder strengths, W, not exceeding the critical value W_c . The width $\varepsilon(t)$ of (x,t) exhibits a behavior $d \ln_{\varepsilon}(t)/d \ln t = \beta_{\varepsilon}(t)$, where $\beta_{\varepsilon}(t)1/2$ is seen to depend strongly on L at all investigated parameter combinations. (i) We do not find a region in phase space that exhibits subdiffusive dynamics in the sense that $\beta < 1/2$ in the thermodynamic limit. Instead, subdiffusion may be transient, giving way eventually to conventional diffusive behavior, $\beta = 1/2$. (ii) (Transient) subdiffusion $0 < \beta_{\epsilon}(t) 1/2$, coexists with an enhanced probability for returning to the origin, (0,t), decaying much slower than $1/\varepsilon(t)$. Correspondingly, the spatial decay of (x, t) is far from Gaussian, i.e. exponential or even slower. On a phenomenological level, our findings are broadly consistent with effects of strong disorder and Griffiths regions.

¹We acknowledge support from the DFG under projects EV30/7-1 and EV30/11-1 and from the ERC starting grant QUANTMATT NO. 679722

Ferdinand Evers Institut fr Theoretische Physik, Universitt Regensburg

Date submitted: 11 Nov 2016

Electronic form version 1.4