STM STUDY OF QUASI-1D C\textsubscript{60} NANOSTRUCTURES ON RIPPLED GRAPHENE1 CHUANHUI CHEN, HUSONG ZHENG, ADAM MILLS, JAMES HEFLIN, CHENGGANG TAO, Virginia Tech — As two nanos-structured allotropes of carbon, both graphene and fullerene exhibit fascinating physical properties and have numerous applications. A particularly interesting arrangement of C\textsubscript{60} is the quasi-one-dimensional (1D) structure, an excellent model system and prototype of quantum confinement of electronic states. However, quasi-1D C\textsubscript{60} nanostructures have been rarely realized experimentally due to their highly anisotropic configuration. I will report our experimental realization of quasi-1D C\textsubscript{60} nanostructures on rippled graphene by utilizing the linear periodic potential in graphene. Through careful control of the subtle balance between the linear periodic potential of rippled graphene and the C\textsubscript{60} intermolecular interaction, we demonstrated that C\textsubscript{60} molecules can be arranged into a novel 1D C\textsubscript{60} chain structure with widths of two to three molecules. At a higher annealing temperature, the 1D chain structure transitions to a more compact hexagonal close packed quasi-1D stripe structure. This first experimental realization of 1D C\textsubscript{60} structures on rippled graphene may pave a way for fabricating new C\textsubscript{60}/graphene hybrid structures for future applications in electronics, spintronics and quantum information.

1This work is supported by the U.S. Army Research Office under the grant W911NF-15-1-0414

Chuanhui Chen
Virginia Tech

Date submitted: 16 Feb 2017

Electronic form version 1.4