Optimization of passive error correction parameters for the Very Small Logical Qubit

DAVID RODRIGUEZ PEREZ, Tulane University, ERIC HOLLAND, JONATHAN DUBOIS, Lawrence Livermore National Laboratory, ELIOT KAPIT, Tulane University — The Very Small Logical Qubit is a promising route to passive error correction in superconducting qubit architectures. However; optimal circuit parameters for given single qubit lifetimes and nonlinearities are not yet known. We describe a numerical optimization scheme to find the optimal device and signal parameters to maximize the logical state lifetime in simulations with realistic single qubit error rates, and report theoretical coherence times T_L exceeding 1 ms for single qubit T_1 as low as 20 μs. These results clearly illustrate the tradeoff between rapid error correction and noise induced by the error correction mechanism itself. Further, we consider higher order corrections beyond the three-level approximation, and show that their effects can be easily mitigated.