Abstract Submitted for the MAR17 Meeting of The American Physical Society

Evolution of Oxygen Vacancy Ordered Phases in SrCoO$_x$ Under Varying Molecular Beam Epitaxy Growth Conditions1 TASSIE ANDERSEN, SAY YOUNG COOK, Northwestern University, HAWOONG HONG, DILON FONG, Argonne National Laboratory, LAURENCE MARKS, Northwestern University — Strontium cobaltite, SrCoO$_x$ (SCO), is interesting for applications as a functional oxide, as its oxygen vacancy concentration tunes properties from an antiferromagnetic insulator ($x=2.5$) to a ferromagnetic metal ($x=3.0$). This work focuses on growth and control of vacancy content in brownmillerite (BM-SCO) and SrCoO$_{2.5+z}$ phases via molecular beam epitaxy (MBE) necessary for device and heterostructure fabrication where vacancy-induced functionalities must be controlled. In-situ x-ray oxide MBE at Sector 33ID-E of the Advanced Photon Source was used for synthesis. Films of SrCoO$_{2.5+z}$ were grown epitaxially on SrTiO$_3$ (001) via shuttered deposition of SrO/CoO$_{1-z}$ unit-cells with different schemes. During and after growth scattered intensity in the out-of-plane direction (00L) was measured with 8 keV x-rays. X-ray Absorption Near-Edge Spectroscopy spectra at the Co K-edge (7.71 keV) were measured. Films exhibited BM-SCO and a second vacancy ordered phase, similar to the SrCoO$_{2.875}$ phase, dependent on the shutter scheme and overall deposition time. Direct growth of this phase rather than oxidation of BM-SCO to obtain SCO$_{2.5+z}$ phases suggests that this is a metastable phase that could allow for further customization of cobaltite-containing materials.

1Use of the APS was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

Tassie Andersen
Northwestern University

Date submitted: 11 Nov 2016

Electronic form version 1.4