Hybridization gap and dual nature of the heavy-fermion compound $\text{UPd}_2\text{Al}_3$1 WAN KYU PARK, Florida State University, NARENDRA JAGGI, Illinois Wesleyan University, OMAR MEHIO, MATTHEW DWYER, University of Illinois at Urbana-Champaign, LAURA GREENE, RYAN BAUMBACH, Florida State University, PAUL TOBASH, ERIC BAUER, JOE THOMPSON, Los Alamos National Laboratory — We present results from point-contact spectroscopy in the non-superconducting state of UPd_2Al_3, a heavy-fermion antiferromagnetic superconductor [1]. Spectroscopic signatures are clearly observed including the distinct asymmetric double-peak structure arising from a hybridization gap opening with the formation of a coherent heavy Fermi liquid. While the hybridization gap is extrapolated to remain finite up to \sim28 K, close to the temperature around which the magnetic susceptibility forms a broad peak, the conductance enhancement vanishes at \sim18 K, slightly above the antiferromagnetic transition temperature. Our analysis suggests that the conductance enhancement weakens rapidly as the T_N is crossed from below because the junction is tuned away from the ballistic regime due to increased scattering off magnons associated with the localized U 5f electrons. This shows that while the hybridization gap opening is not directly associated with the antiferromagnetic ordering, its visibility is greatly affected by the temperature-dependent magnetic excitations. Our results not only support a 5f dual nature scenario proposed for understanding properties of this compound but also shed new light on the interplay between the itinerant and localized electrons. [1] N. Jaggi et al., arXiv:1610.08601.

1Worked supported by US NSF DMR 12-06766 & US DOE BES DMSE

Wan Kyu Park
Florida State University

Date submitted: 11 Nov 2016

Electronic form version 1.4