Abstract Submitted for the MAR17 Meeting of The American Physical Society

 μ SR studies of the extended kagome systems YBaCo₄O_{7+ δ} (δ = 0 and 0.1) SUHEON LEE, WONJUN LEE, Chung-Ang University, JOHN MITCHELL, Argonne National Laboratory, KWANG-YONG CHOI, Chung-Ang University — We present a μ SR study of the extended kagome systems YBaCo₄O_{7+ δ} $(\delta = 0 \text{ and } 0.1)$, which are made up of an alternating stacking of triangular and kagome layers. The parent material YBaCo₄O_{7.0} undergoes a structural phase transition at 310 K, releasing geometrical frustration and thereby stabilizing an antiferromagnetically ordered state below $T_N = 106$ K. The μ SR spectra of YBaCo₄O_{7,0} exhibit the loss of initial asymmetry and the development of a fast relaxation component below $T_N = 111$ K. This indicates that the Co spins in the kagome planes remain in an inhomogeneous and dynamically fluctuating state down to 4 K, while the triangular spins order antiferromagnetically below T_N . The nonstoichiometric YBaCo₄O_{7.1} compound with no magnetic ordering exhibits a disparate spin dynamics between the fast cooling (10 K/min) and slow cooling (1 K/min) procedures. While the fast-cooled μ SR spectra show a simple exponential decay, the slow-cooled spectra are described with a sum of a simple exponential function and a stretched exponential function. These are in agreements with the occurrence of the phase separation between interstitial oxygen-rich and poor regions in the slow-cooling measurements.

> Suheon Lee Chung-Ang University

Date submitted: 11 Nov 2016

Electronic form version 1.4