Applications of the scattering theory of magnetization damping ${ }^{1}$

PAUL J. KELLY, University of Twente

Magnetization (or Gilbert) damping results from a combination of spin-orbit coupling and disorder. I review a scattering theoretical formulation of magnetization damping [1] implemented without parameters in density functional theory with a very efficient basis of tight-binding muffin tin orbitals [2]. By being able to handle scattering regions containing in excess of 10,000 atoms, the influence of various types of disorder can be studied, including temperature-induced lattice and spin disorder [3]. I discuss applications to the important itinerant ferromagnets Fe , Co and $\mathrm{Ni}[4,5]$ as well as to the binary substitutional ferromagnetic alloys $\mathrm{Fe}_{x} \mathrm{Ni}_{1-x}, \mathrm{Fe}_{x} \mathrm{Co}_{1-x}$, and $\mathrm{Co}_{x} \mathrm{Ni}_{1-x}[2,5]$ where the prediction of a very low damping in the $\mathrm{Fe}_{x} \mathrm{Co}_{1-x}$ system was recently confirmed by experiment [6]. Studies of damping in structurally [7] and magnetically [8] inhomogeneous systems of great current interest lead to a number of new insights and predictions.
[1] A. Brataas, Y. Tserkovnyak, and G. E.W. Bauer, PRL101, 037207 (2008); PRB84, 054416 (2011).
[2] A.A. Starikov, P.J. Kelly, A. Brataas, Y.Tserkovnyak, and G. E.W. Bauer, PRL105, 236601 (2010).
[3] Y. Liu, Z. Yuan, R.J.H. Wesselink, A.A. Starikov, M. van Schilfgaarde and P.J. Kelly, PRB91, 220405 (2015).
[4] Y. Liu, A.A. Starikov, Z. Yuan and P.J. Kelly, PRB84, 014412 (2011).
[5] H. Ebert, S. Mankovsky, D. Koedderitzsch and P.J. Kelly, PRL107, 066603 (2011).
[6] M.A.W. Schoen, D. Thonig, M.L. Schneider, T.J. Silva, H.T. Nembach, O. Eriksson, O. Karis, and J.M. Shaw, Nat. Phys. (2016).
[7] Y. Liu, Z. Yuan, R.J.H. Wesselink, A.A. Starikov, and P.J. Kelly, PRL113, 207202 (2014).
[8] Z. Yuan, K.M.D. Hals, Y. Liu, A.A. Starikov, A. Brataas and P.J. Kelly, PRL113, 266603 (2014).
${ }^{1}$ Work carried out in collaboration with Z. Yuan, Y. Liu, A.A. Starikov, R.J.H. Wesselink and A. Brataas.

