Abstract Submitted for the MAR17 Meeting of The American Physical Society

Band alignment and bending in Dirac semimetal Na_3Bi thin films on Al_2O_3 substrates¹ KYUNGWHA PARK, JOHN VILLANOVA, Virginia Tech — Dirac semimetals Na_3Bi and Cd_3As_2 are interesting due to topologically protected degenerate Weyl nodes with linear dispersions at the Fermi level and topological Fermi-arc surface states. Recently, thin films of Na_3Bi have been epitaxially grown on Al_2O_3 substrates and their electron transport properties have been measured. However, the interfaces between the Dirac semimetal films and the substrates have not been characterized yet. Here we investigate electronic and topological properties of thin Na_3Bi films on Al_2O_3 substrates near the Fermi level, by using densityfunctional theory with spin-orbit coupling. We also discuss effects of band alignment and band bending on the electronic and topological properties and compare with experimental data.

 $^1\mathrm{National}$ Science Foundation grant No DMR-1206354 and SDSC under DMR060009N

Kyungwha Park Virginia Tech

Date submitted: 11 Nov 2016

Electronic form version 1.4