Formation of 2DEG at the interface of unconventional oxide hetero-structures by atomic layer deposition.1 FARIDA SELIM, DAVE WINARSKI, Department of Physics and Astronomy, Bowling Green State University, Ohio, USA, KEVIN LEEDY, DAVID LOOK, Air Force Research Laboratory Sensors Directorate, Wright-Patterson Air Force Base, SELIM TEAM, LEEDY COLLABORATION — Two-dimensional electron gases (2DEGs) with a sheet carrier density of 10^{14} cm-2 and high electron mobility have been realized at the interface of SrTiO\textsubscript{3} and Al\textsubscript{2}O\textsubscript{3} films grown by atomic layer deposition at very low temperatures. Possible origins for the high electron densities will be discussed. By controlling the interface, the sheet resistance exhibited a wide range of change from 10^3 to $10^{13} \Omega$/square. Temperature dependent Hall-effect measurements revealed metallic conduction and metal-semiconductor transitions. The effect of growth parameters, surface conditions, and film thickness on the transport properties of the interface will be discussed.

1Work has been supported by Air Force Office of Scientific Research

Farida Selim
Department of Physics and Astronomy, Bowling Green State University, Ohio, USA

Date submitted: 11 Nov 2016
Electronic form version 1.4