Abstract Submitted for the MAR17 Meeting of The American Physical Society

¹¹B Pulsed NMR Study of DyNi₂B₂C Single Crystals MOOHEE LEE, SE-GEUN KWON, KIHYEOK KANG, Konkuk University, Republic of Korea. BEONGKI CHO, Gwangju Institute of Science and Technology, Republic of Korea - DyNi₂B₂C is the only compound in the RNi₂B₂C (R = rare-earth) series where superconductivity at T_c 6.2 K coexists with the antiferromagnetic ordering below the Nel temperature T_N ~10.3 K. ¹¹B pulsed NMR measurements were performed at 8.0056 T to investigate the local electronic structures and 4f spin dynamics of DyNi₂B₂C powders and single crystals. The spectrum for the single crystal showed three narrow resonance peaks at 295 K due to the nuclear Zeeman splitting of a nuclear spin I = 3/2 with quadrupolar perturbation. The ¹¹B NMR Knight shift of the single crystal was very large and highly anisotropic at K = -0.60% and +0.27% for the fields parallel and perpendicular, respectively, to the c-axis at 295 K. Considering the anisotropy of the Knight shift, we were able to simulate the ¹¹B NMR power pattern that agreed well with the measured spectrum. The linewidth was also large and anisotropic, and the linewidth value increased rapidly at low temperatures. The ¹¹B NMR shift and linewidth were found to be proportional to the magnetic susceptibility, indicating that the hyperfine field at the B site originates from the 4f spins of Dy. Above T_N , the values for $1/T_1$ and $1/T_2$ were very large, showing slight increases at low temperatures. Below T_N , the values of $1/T_1$ and $1/T_2$ were suppressed significantly because of the slowing of the 4f spin fluctuation. This confirmed the huge change in Dy 4f spin dynamics across the antiferromagnetic transition.

Moohee Lee Konkuk University, Seoul 143-701, Republic of Korea

Date submitted: 11 Nov 2016

Electronic form version 1.4