

\textbf{11B Pulsed NMR Study of DyNi$_2$B$_2$C Single Crystals} MOOHEE LEE, SE-GEUN KWON, KIHYEOK KANG, Konkuk University, Republic of Korea, BEONGKI CHO, Gwangju Institute of Science and Technology, Republic of Korea

DyNi$_2$B$_2$C is the only compound in the RNi$_2$B$_2$C (R = rare-earth) series where superconductivity at $T_c \approx 6.2$ K coexists with the antiferromagnetic ordering below the Nel temperature $T_N \approx 10.3$ K. 11B pulsed NMR measurements were performed at 8.0056 T to investigate the local electronic structures and $4f$ spin dynamics of DyNi$_2$B$_2$C powders and single crystals. The spectrum for the single crystal showed three narrow resonance peaks at 295 K due to the nuclear Zeeman splitting of a nuclear spin $I = 3/2$ with quadrupolar perturbation. The 11B NMR Knight shift of the single crystal was very large and highly anisotropic at $K = -0.60\%$ and $+0.27\%$ for the fields parallel and perpendicular, respectively, to the c-axis at 295 K. Considering the anisotropy of the Knight shift, we were able to simulate the 11B NMR power pattern that agreed well with the measured spectrum. The linewidth was also large and anisotropic, and the linewidth value increased rapidly at low temperatures. The 11B NMR shift and linewidth were found to be proportional to the magnetic susceptibility, indicating that the hyperfine field at the B site originates from the $4f$ spins of Dy. Above T_N, the values for $1/T_1$ and $1/T_2$ were very large, showing slight increases at low temperatures. Below T_N, the values of $1/T_1$ and $1/T_2$ were suppressed significantly because of the slowing of the $4f$ spin fluctuation. This confirmed the huge change in Dy $4f$ spin dynamics across the antiferromagnetic transition.

Moohee Lee

Konkuk University, Seoul 143-701, Republic of Korea

Date submitted: 11 Nov 2016