Abstract Submitted for the MAR17 Meeting of The American Physical Society

Measurements valley splitting in novel Si/SiGe heterostructures¹ SAMUEL F. NEYENS^{*}, RYAN H. FOOTE*, T. J. KNAPP*, BRANDUR THORGRIMSSON*, L. M. K. VANDERSYPEN[†], PAYAM AMIN[‡], ANTONIO RODOLPH B. MEI[‡], NICOLE K. THOMAS[‡], JAMES S. CLARKE[‡], D. E. SAVAGE^{*}, M. G. LAGALLY^{*}, MARK FRIESEN*, S. N. COPPERSMITH*, M. A. ERIKSSON*, *University of Wisconsin-Madison, [†]Delft University of Technology, [‡]Intel Corp. — Achieving an appropriate valley splitting is important for making quantum dot qubits in Si/SiGe heterostructures. We measure valley splittings in novel heterostructures grown with an extra layer of Ge, ~ 5 monolayers in thickness, between the Si well and the SiGe barrier. For one of these extra-Ge heterostructures, the CVD growth was interrupted be-

tween the Si well and the Ge layer to achieve a more abrupt change in composition. The other extra-Ge heterostructure was made with a continuous growth process. Using Hall bar devices on both of these extra-Ge samples as well as one standard sample with no extra Ge, we measure activation energies for valley splittings in the first and second Landau levels. For the $\nu = 3$ valley splitting, we find the abrupt, extra-Ge sample has consistently the highest valley splitting across three different carrier densities. For these densities, the valley splitting in the abrupt, extra-Ge sample is $\sim 50\%$ higher than that of the standard sample.

¹This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028).

> Samuel Nevens Univ of Wisconsin, Madison

Date submitted: 11 Nov 2016

Electronic form version 1.4

of