Hydrogen detection by a boron sheet: A theoretical study.\(^1\) F. JAVIER DOMINGUEZ, Stony Brook University, MICHAL NOVOTNY, Comenius University, Bratislava, PREDRAG S. KRSTIC, Stony Brook University — A single boron sheet is now considered as a new nanomaterial with promising applications in electronics and as a sensor device. In this study we present quantum-classical molecular dynamic (QCMD) calculation of reflection, adsorption, and transmission processes of hydrogen impacting at energy in range 0.25 to 100 eV on a single boron sheet. Quantum-mechanical component of our QCMD approach is self-consistent charge tight binding density functional theory method (SCC-DFTB, [1]). We consider the corrugated boron sheet as our target, created experimentally [2], and compare our results with those reported for graphene [3], showing noticeable differences.

\(^1\)Research supported by CONACyT postdoctoral scholarship to FJD and the Fulbright Commission (Grant 15160939) to MN. Results were obtained using the LI-red cluster at IACS.