Entanglement entropy of the large N Wilson-Fisher conformal field theory\(^1\) SETH WHITSITT, Harvard Univ, WILLIAM WITCZAK-KREMPA, Université de Montréal, SUBIR SACHDEV, Harvard Univ — We compute the entanglement entropy of the Wilson-Fisher conformal field theory (CFT) in 2+1 dimensions with $O(N)$ symmetry in the limit of large N for general entanglement geometries. We show that the leading large N result can be obtained from the entanglement entropy of N Gaussian scalar fields with their mass determined by the geometry. For a few geometries, the universal part of the entanglement entropy of the Wilson-Fisher CFT equals that of a CFT of N massless scalar fields. However, in most cases, these CFTs have a distinct universal entanglement entropy even at $N = \infty$. Notably, for a semi-infinite cylindrical region it scales as N^0 in the Wilson-Fisher theory, in stark contrast to the N-linear result of the Gaussian fixed point.

\(^1\)NSF under Grant DMR-1360789, MURI grant W911NF-14-1-0003 from ARO, Discovery Grant from NSERC, NSF grant PHY-1066293