Dense Carbon Monoxide to 160 GPa: Stepwise Polymerization to Two-Dimensional Layered Solid.1 YOUNG JAY RYU, MINSOEB KIM, Washington State University, RANGA DIAS, Lyman Laboratory of Physics, Harvard University, DENNIS KLUG, Steacie Institute for Molecular Science, National Research Council of Canada, CHOONG-SHIK YOO, Washington State University — Carbon monoxide (CO) is one of simple molecular systems like N$_2$, O$_2$ and H$_2$, yet been studied at pressures above 5-10 GPa. It is also the first molecular system found to transform into a nonmolecular polymeric solid in high energy density at 5.5 GPa; yet, little is known about its structure and transformation beyond this pressure. This imposes a serious short fall in understanding high-pressure behaviors of heteronuclear diatomic systems like CO in comparison with those of homonuclear diatomic systems like N$_2$. Here, we present a series of pressure-induced phase transformations in CO to 160 GPa: from a molecular solid to a highly colored, low-density polymeric phase I to translucent, high-density phase II to transparent, and indirect-gap semi-metallic phase III. The properties of these polymorphs are consistent with those expected from recently predicted 1D $P2_1/m$, 3D $P2_12_12_1$, and 2D $Cmcm$ structures, respectively. Thus, the present results suggest a stepwise polymerization of CO triple bonds to ultimately a 2D singly bonded layer structure, as recently found in dense nitrogen (LP-N).

1The present study was supported by the DARPA (W31P4Q-12-1-0009 and HR0011-14-C-0035). A part of this work was also supported by NSF-DMR (Grant No. 1203834) and DTRA (HDTRA1-12-01-0020).