Place in a session on general quantum systems

Abstract Submitted for the MAR17 Meeting of The American Physical Society

A quantum particle in a high-symmetry two-dimensional box MAXIMILLIAAN KOOPMAN, ANDREW DAVIS, QING WANG, ANTONETT NUNEZDELPRADO, CONSTANCE DOTY, TRISTAN REYNOSO, RICHARD KLEMM, Univ of Central Florida — We present contour-plot representations of the low-energy wave functions for a quantum particle in a two-dimensional infinite well potential exhibiting perfect C_{∞} (disk), C_{2v} , (rectangular), C_{3v} (equilateral triangular), or C_{4v} (square) point group symmetry. The rotationally-invariant C_{∞} -allowed wave functions have the integer quantum numbers $n \ge 1$. For the rectangular box, all wave functions with $n, n' \geq 1$ are allowed, and each one is an allowed representation of the C_{2v} point group. However, for the equilateral-triangular and square boxes, some quantum numbers have to be eliminated, as the wave functions to which they correspond cannot be made into representations of the respective C_{3v} or C_{4v} point groups. For the equilateral triangular box, only |n-n'| = 3p are allowed, where $p \ge 0$ for the wave functions even about the three mirror planes, and $p \ge 1$ for wave functions odd about the three mirror planes. For the square box, |n - n'| = 2p are allowed, where for $p \neq 0$, only the sum and difference of the two degenerate wave functions are representations of the C_{4v} point group.

> Richard Klemm Univ of Central Florida

Date submitted: 12 Dec 2016

Electronic form version 1.4