Abstract Submitted for the MAR17 Meeting of The American Physical Society

Low-Temperature Transport Measurements of Multilayer WSe₂ **FETs**¹ L. J. STANLEY, DRAGANA POPOVIC, National High Magnetic Field Lab., Florida State University, HSUN-JEN CHUANG, ZHIXIAN ZHOU, Wayne State University, MICHAEL KOEHLER, The University of Tennessee, JIAQIANG YAN, DAVID MANDRUS, The University of Tennessee and Oak Ridge National Lab — Transition metal dichalcogenides (TMDs) offer an exciting new opportunity to study transport in 2D and the universality of the 2D metal-insulator-transition (MIT), but high-resistance, non-ohmic contacts have been a major impediment. Recently, however, 2D/2D low-resistance ohmic contacts have been produced on ultrathin TMD samples [1] allowing for low-temperature characterization. We report studies of WSe₂ FET samples with ~ 10 layers each, patterned into Hall bars, and with a favorably high mobility of up to $\sim 0.2 \text{ m}^2/\text{Vs}$ at $\sim 5 \text{ K}$. Two-terminal and four-terminal conductivity (σ) measurements were performed at temperatures $0.25 \leq T(K) \leq 200$. Our results show that contacts remain ohmic down to 0.25 K over the entire useful range of back-gate voltages V_{bq} . Furthermore, the measurements reveal a change in the sign of $d\sigma/dT$ and the form of $\sigma(T)$ with V_{ba} , strongly suggesting the existence of a 2D MIT in this system. [1] Hsun-Jen Chuang et al., Nano Lett. 16, 1896 (2016).

¹Supported by NSF DMR-1308436, NSF DMR-1307075, and NHMFL via NSF DMR-1157490 and the State of Florida

Lily Stanley Florida State Univ

Date submitted: 11 Nov 2016

Electronic form version 1.4