Arrow of time for repeated and continuous quantum measurement

ANDREW JORDAN, University of Rochester, JUSTIN DRESSEL, Chapman University, AREEYA CHANTASRI, University of Rochester, KATER MURCH, Washington University, St. Louis, ALEXANDER KOROTKOV, University of California, Riverside — We will present theoretical results on the statistical arrow of time for a quantum system being monitored by a sequence of measurements. For a continuous qubit measurement example, we demonstrate that time-reversed evolution is always physically possible, provided that the measurement record is also negated. Despite this restoration of dynamical reversibility, a statistical arrow of time emerges, and may be quantified by the log-likelihood difference between forward and backward propagation hypotheses. We then show that such reversibility is a universal feature of non-projective measurements, with forward or backward Janus measurement sequences that are time-reversed inverses of each other.

1John Templeton Foundation, ID 58558, ARO Grants No. W911NF-15-1-0496, No. W911NF-13-1-0402, NSF grant DMR-1506081, and DTSPPT Thailand

Andrew Jordan
University of Rochester

Date submitted: 11 Nov 2016

Electronic form version 1.4