Scanning-SQUID investigation of spin-orbit torque acting on yttrium iron garnet devices1 AARON J. ROSENBERG, Stanford University, COLIN L. JERMAIN, SRIHARSHA V. ARADHYA, Cornell University, JACK T. BRANGHAM, Ohio State University, KATJA C. NOWACK, Cornell University, JOHN R. KIRTLEY, Stanford University, FENGYUAN YANG, Ohio State University, DANIEL C. RALPH, Cornell University, KATHRYN A. MOLER, Stanford University — Successful manipulation of electrically insulating magnets, such as yttrium iron garnet, by current-driven spin-orbit torques could provide a highly efficient platform for spintronic memory. Compared to devices fabricated using magnetic metals, magnetic insulators have the advantage of the ultra-low magnetic damping and the elimination of shunting currents in the magnet that reduce the torque efficiency. Here, we apply current in the spin Hall metal β-Ta to manipulate the magnetic orientation of micron-sized, electrically-insulating yttrium iron garnet devices. We do not observe spin-torque switching even for applied currents well above the critical current expected in a macrospin switching model. This suggests either inefficient transfer of spin torque at our Ta/YIG interface or a breakdown of the macrospin approximation.

1This work is supported by FAME, one of six centers of STARnet sponsored by MARCO and DARPA. The SQUID microscope and sensors were developed with support from the NSF-sponsored Center NSF-NSEC 0830228, and from NSF IMRMIP 0957616

Aaron J. Rosenberg
Stanford University

Date submitted: 11 Nov 2016

Electronic form version 1.4