Majorana-decorated domain wall construction of fermionic SPTs
NICOLAS TARANTINO, LUKASZ FIDKOWSKI, State Univ of NY- Stony Brook
— A decorated domain wall construction generates a symmetry-protected topological phase (SPT) by begin in a symmetry-broken phase with multiple domains, binding a non-trivial lower dimensional phase to the domain boundary, and then restoring the symmetry by proliferating the domain walls. In this talk, I will sketch how this technique was used to build a commuting projector model of a unitary \mathbb{Z}_2 protected fermionic SPT1. The symmetry fluxes in this phase, which can be thought of as open ends of domain walls, support Majorana zero modes, and so the domain walls should support a 1D phase which supports Majoranas on open boundaries, the Kitaev chain. Curiously, implementing this consistently requires the introduction of a Kasteleyn orientation, a lattice equivalent of a spin structure, to avoid accidentally breaking fermion parity. Time permitting, I will discuss known and possible generalizations of this construction.