Understanding polarization bias in PbTiO\textsubscript{3}/SrTiO\textsubscript{3} and Pb-TiO\textsubscript{3}/SrRuO\textsubscript{3} superlattices

SIMON DIVILOV, Stony Brook University, MARIVI FERNANDEZ-SERRA COLLABORATION, GREG HSING COLLABORATION, MATTHEW DAWBER COLLABORATION — We use first principles density functional theory to explain how Pb-O divacancies (DV) and other symmetry breaking factors create a preferred polarization state leading to a bias as seen in experiments. Our results for PbTiO\textsubscript{3}/SrTiO\textsubscript{3} (PTO/STO) indicate that Pb-O DV prefer to form on one side of the interface than the other during growth, leading to a preferred polarization state. For PbTiO\textsubscript{3}/SrRuO\textsubscript{3} (PTO/SRO) the situation is more complicated due to intrinsic compositional inversion symmetry breaking, which competes with the tendency of DV to form at different sites within the superlattice structure.

Simon Divilov
Stony Brook University