Abstract Submitted for the MAR17 Meeting of The American Physical Society

Effect of site disorder on the ground state of a frustrated spin dimer quantum magnet¹ ALEXANDER HRISTOV, MAXWELL SHAPIRO, Stanford University, MINSEONG LEE, LINSEY RODENBACH, EUN SANG CHOI, JU-HYUN PARK, NHMFL, Florida State University, TIM MUNSIE, GRAEME LUKE, McMaster University, IAN FISHER, Stanford University - $Ba_3Mn_2O_8$ is a geometrically frustrated spin dimer quantum magnet. Pairs of Mn ⁵⁺ (S = 1) ions are strongly coupled via antiferromagnetic exchange to yield a singlet ground state, with excited triplet and quintuplet states. Isovalent substitution of V⁵⁺ (S = 0) for Mn breaks dimers, resulting in unpaired S = 1 spins, the ground state of which is investigated here for compositions spanning the range $0 \le x \le 1$ of Ba₃(Mn_{1-x}V_x)₂O₈. From a theoretical perspective, for dimens occupying an unfrustrated bipartite lattice, such site disorder is anticipated to yield long range magnetism for unpaired Mn spins both in the dilute limit where x is small, a phenomena known as order-by-disorder, and in the proximity of x = 1/2where the system is maximally disordered and close to a percolation threshold. In this frustrated system, however, our experiments find evidence of spin freezing for six compositions $0.05 \le x \le 0.85$. In this regime, we find entropy removed at an energy scale independent of the freezing temperature. We discuss the possibility of a spin-glass to random singlet transition for critical compositions in the two dilute limits $x \to 0$ and $x \to 1$.

¹NSF DMR-Award 1205165

Alexander Hristov Stanford University

Date submitted: 11 Nov 2016

Electronic form version 1.4