Improved metallic surface properties using a new van der Waals density functional

ABHIRUP PATRA, JIANWEI SUN, JEFFERSON BATES, JOHN P. PERDEW, Department of Physics, Temple University, Philadelphia, Pennsylvania — An incorrect description of van der Waals (vdW) interactions for different problems using popular density functional theory (DFT) is found in many cases, especially where long-range van der Waals interactions are present. Metallic surfaces are such systems. Physical properties of surfaces such as surface energy and work function can be affected by the long-range van der Waals interaction present at the surface barrier. In this work we explore the performance of the new vdW-corrected non-local density functional SCAN+rVV10 for such surfaces. We find that, when the new meta-GGA functional SCAN is combined with the non-local rVV10 method, it can not only give a better description of the van der Waals interaction in molecules and layered materials, but can be equally used as a more versatile competitor of LDA for metal surfaces.


1 Department of Physics, University of Texas at El Paso, El Paso, Texas

Date submitted: 12 Nov 2016

Abhirup Patra
Department of Physics, Temple University, Philadelphia, Pennsylvania