Exploring AFQMC Calculations in Solids and Molecules

EDGAR JOSUE LANDINEZ BORDA, MIGUEL MORALES SILVA, Lawrence Livermore National Lab, BRENDA RUBENSTEIN COLLABORATION1, JOHN GOMEZ COLLABORATION2 — The Auxiliary Field Quantum Monte Carlo (AFQMC) \cite{1} method has been outlined as a promising path to compute the electronic structure of strong correlated molecules and solids \cite{2},\cite{3}. We explore its capabilities in a broad range of solids and molecules with different types of chemical structure and bonding. In addition, we study the use of single and non-orthogonal multi-determinant wave functions \cite{4} in the calculation of the equation of state and atomization energies of the systems studied. Overall, we finding good agreement with experimental results.1\cite{1}Shiwei Zhang, Henry Krakauer, Phys. Rev. Lett. 90. 136401 (2003). 2\cite{2} S. Zhang, "Auxiliary-Field Quantum Monte Carlo for Correlated Electron Systems, Emergent Phenomena in Correlated Matter, Modeling and Simulation Vol. 3 (2013), Edtied by E. Pavarini, E. Koch, and U. Schollwock.3\cite{3} Fengjie Ma, Wirawan Purwanto, Shiwei Zhang, and Henry Krakauer Phys. Rev. Lett. 114, 226401 (2015)4\cite{4}Symmetry-projected wavefunctions in Quantum Monte Carlo calculations, H. Shi, C. A. Jiménez-Hoyos, R. R. Rodríguez-Guzmán, G. E. Scuseria, and S. Zhang,Phys. Rev.B 89, 125129 (2014).

1Brown University
2Rice University

Edgar Josue Landinez Borda
Lawrence Livermore National Lab

Date submitted: 12 Nov 2016

Electronic form version 1.4