Ground-state properties of the three-band Hubbard model1 SHI-WEI ZHANG, ETTORE VITALI, ADAM CHICIAK, HAO SHI, College of William and Mary — The three-band Hubbard model proposed by Emery describes the CuO$_2$ plane in cuprate superconductors by retaining both Cu and O orbitals in a minimal sense. Applying the latest developments in the auxiliary-field quantum Monte Carlo (AFQMC) method, we investigate ground-state properties of this model at half-filling and when lightly (under-)doped. The AFQMC uses generalized Hartree-Fock (GHF) trial wave functions to control the sign problem. A self-consistent constraint 2 is applied. We also determine the unrestricted Hartree-Fock (UHF) and GHF ground states and compare their predictions with those from AFQMC. Similarities and differences between the three-band model and one-band Hubbard model will be discussed.

1Supported by NSF, and the Simons Foundation. Computing is carried out at the Extreme Science and Engineering Discovery Environment (XSEDE).