Abstract Submitted for the MAR17 Meeting of The American Physical Society

Monte Carlo Simulation Study of Atomic Structure of alnico Permanent Magnets MANH CUONG NGUYEN, CAI-ZHUANG WANG, KAI-MING HO, Ames Laboratory, U.S. DOE — Lattice Monte Carlo simulation based on quinternary cluster expansion energy model is used to investigate nano-scale structure of alnico alloy, which is considered as a candidate material for rare-earth free high performance permanent magnets, especially for high or elevated temperature applications such as electric motor for vehicles. We observe phase decomposition of the master alnico alloy into FeCo-rich magnetic ($\alpha 1$) and NiAl-rich matrix ($\alpha 2$) phases. Concentrations of Fe and Co in α 1 phase and Ni and Al in α 2 phase are higher for lower annealing temperature. Ti is residing mostly in the α^2 phase. The phase boundary between $\alpha 1$ and $\alpha 2$ phases are quite sharp with only few atomic layers. The $\alpha 1$ phase is in B2 ordering with Fe and Al occupying the α -site and Ni and Co occupying the β -site. The α 2 phase is in L21 ordering with Al occupying the 4a-site. The phase composition profile again annealing temperature suggests that lower annealing temperature would improve the magnetism of α^2 and diminish the magnetism of α^2 phase, hence improve shape anisotropy of α^2 phase rods and that of alnico.

Manh Cuong Nguyen Ames Laboratory, U.S. DOE

Date submitted: 11 Nov 2016 Electronic form version 1.4