Valley Structure and Giant Spin Splitting in Lead Salts Nanowires

IVAN AVDEEVEV, ALEXANDER PODDUBNY, Ioffe Institute, SERGUEI GOUPALOV1, Jackson State Univ, MIKHAIL NESTOKLON, Ioffe Institute

— We employ tight-binding method and $k \cdot p$ theory to analyze valley structure of PbSe nanowires grown along the [111] direction and having unit cells of different point symmetry: D_{3d}, D_3, and C_{2h}. We show that, while all three nanowire symmetries exhibit large valley splittings of electronic subbands, the D_3 wires are of special interest, as they possess a screw axis which results in appreciable spin-dependent splittings of electronic subbands, linear in one-dimensional wave vector.

1Also with Ioffe Institute