Surface Dynamics in Polymer Nanocomposite Films

KYLE JOHNSON, EMMANOUIL GLYNOS, Univ of Michigan - Ann Arbor, SURESH NARAYANAN, Advanced Photon Source-Argonne National Laboratory, GEORGIOS SAKELLARIOU, University of Athens, PETER GREEN, University of Michigan — The dynamics of supported polymer nanocomposite thin films were studied using x-ray photon correlation spectroscopy. Measurements were performed on 50 and 200 nm films of unentangled poly(2-vinyl pyridine) (P2VP) grafted gold nanoparticles in an unentangled P2VP host of smaller molecular weight at temperatures above the glass transition. The grafted and host chain degree of polymerization were $N = 96$ and $P = 44$ respectively. The presence of the nanoparticles and their interactions with the polymer host are shown to slow down the dynamics of the film at large thicknesses. As the film thickness h approaches the interparticle spacing l_D, the dynamics become much slower due to confinement of the nanoparticles.

1This research was supported by the National Science Foundation (NSF), Division of Materials Research (DMR-1305749). Beam time at APS-ANL was granted under proposal GUP 37714.