Abstract Submitted for the MAR17 Meeting of The American Physical Society

Synthesis of High-Oxidation Y-Ba-Cu-O Phases in Superoxygenated Thin Films¹ H. ZHANG, University of Toronto, N. GAUQUELIN, Canadian Centre for Electron Microscopy & Brockhouse Institute for Materials Research, C. MCMAHON, University of Waterloo, D. G. HAWTHORN, University of Waterloo & Canadian Institute for Advanced Research, G. A. BOTTON, Canadian Centre for Electron Microscopy & Brockhouse Institute for Materials Research, J. Y.T. WEI, University of Toronto & Canadian Institute for Advanced Research — It is known that solid-state reaction in ultrahigh-pressure oxygen can stabilize highoxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large proportion of surface to bulk, are thermodynamically more reactive. Epitaxial thin films of YBa₂Cu₃O_{7- δ} grown by pulsed laser deposition are post-annealed at up to 700 atm O_2 and $900^{\circ}C$, in conjunction with Cu enrichment by solid-state diffusion. The films show clear formation of $Y_2Ba_4Cu_7O_{15-\delta}$ and $Y_2Ba_4Cu_8O_{16}$ as well as regions of YBa₂Cu₅O_{9- δ} and YBa₂Cu₆O_{10- δ} phases, according to scanning transmission electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. Similarly annealed YBa₂Cu₃O_{7- δ} powders show no phase conversion. Our results suggest that more complex phases of cuprates and other superconducting oxides may be discovered via this superoxygenation route of synthesis.

¹Work supported by NSERC, CFI-OIT and CIFAR.

H. Zhang University of Toronto

Date submitted: 11 Nov 2016

Electronic form version 1.4