Abstract Submitted for the MAR17 Meeting of The American Physical Society

Scaling and carrier transport properties of monolayer MoS_2 transistors AMIRHASAN NOURBAKHSH, AHMAD ZUBAIR, REDWAN SAJJAD, AMIR TAVAKKOLI, XI LING, MILDRED DRESSELHAUS, JING KONG, KARL BERGGREN, DIMITRI ANTONIADIS, TOMAS PALACIOS, Massachusetts Institute of Technology — 2D crystals of layered transition metal dichalcogenides such as MoS_2 are ideal candidates for aggressive miniaturization of field-effect transistors (FETs) to the single digit nanometer scale. This class of materials can benefit from their atomically thin body with dangling-bond-free surfaces. In particular, monolayer-MoS₂, because of its bandgap of 1.8 eV yields high I_{on}/I_{off} ratio FETs, while its atomically thin body, t ≈ 0.7 nm, facilitate the reduction of characteristic scaling length. In this work, we first demonstrate the fabrication and electrical characteristics of a MoS_2 FET using single-layer graphene as the source/drain contacts and a channel length of 15 nm. The MoS₂ FET had an I_{on}/I_{of} of $\approx 10^6$ with an I_{on} $50 \ \mu A/\mu m$ and minimum subthreshold slope of 90 mV/dec. Next, by exploiting the semiconducting to metallic phase transition in MoS_2 , we demonstrate a 7.5 nm transistor channel length by patterning of MoS_2 in a periodic chain of semiconducting and metallic-phase MoS_2 regions. The transistor chain shows I_{on}/I_{off} $\approx 10^{5}$ with $I_{off} \approx 100 \text{ pA}/\mu\text{m}$. Modeling of the resulting characteristics reveals that the $2H/1T' MoS_2$ homojunction has a resistance of 75 $\Omega.\mu m$ while the $2H-MoS_2$ exhibits low-field mobility of ~25 cm²/V.s and carrier injection velocity of ~ 10^6 cm/s.

> Ahmad Zubair Massachusetts Institute of Technology

Date submitted: 11 Nov 2016

Electronic form version 1.4