Abstract Submitted for the MAR17 Meeting of The American Physical Society Anisotropic Exponents for Avalanche Correlation Lengths in Self-Affine Growth of Magnetic Domains JOEL CLEMMER, MARK ROBBINS, Johns Hopkins University — Driven interfaces in a wide variety of systems undergo a critical depinning transition as the driving force is increased to a critical value, F_c . Near this transition, growth consists of discrete avalanches with a power law distribution of sizes and a diverging length scale along the interface $\xi_{\parallel} \sim |F_c - F|^{\nu_{\parallel}}$. Scaling theories often assume that correlations perpendicular to the interface diverge with an exponent $\nu_{\perp} = \alpha \nu_{\parallel}$, where α is the self-affine roughness exponent ². We simulate depinning of a self-affine domain wall in the 3D random field Ising model to determine the ratio $\chi \sim \nu_{\perp}/\nu_{\parallel}$. Analyzing individual avalanches show that the height l_{\perp} and width along the interface l_{\parallel} scale as $l_{\perp} \sim l_{\parallel}^{\chi}$ with $\chi = 0.9 \pm 0.05$ over 3 decades in systems of 10^{10} spins. This value of χ is significantly greater than $\alpha \sim 0.67$. Finite size scaling was used to confirm the value of χ . The probability of reaching the top of a system of width L and height L^{χ} as a function of $|F - F_c| L^{1/\nu_{\parallel}}$ collapses for $\chi = 0.9 \pm 0.03$. We discuss the implications for other scaling relations and the conditions where χ and α should differ. ¹Support provided by: DMR-1411144; NSF IGERT-0801471; ARL W911NF-12-2-0022 ²O. Narayan, D. Fisher PRB 82 (1993) Joel Clemmer Johns Hopkins University Date submitted: 11 Nov 2016 Electronic form version 1.4