## Abstract Submitted for the MAR17 Meeting of The American Physical Society

Anisotropic Exponents for Avalanche Correlation Lengths in Self-Affine Growth of Magnetic Domains JOEL CLEMMER, MARK ROBBINS, Johns Hopkins University — Driven interfaces in a wide variety of systems undergo a critical depinning transition as the driving force is increased to a critical value,  $F_c$ . Near this transition, growth consists of discrete avalanches with a power law distribution of sizes and a diverging length scale along the interface  $\xi_{\parallel} \sim |F_c - F|^{\nu_{\parallel}}$ . Scaling theories often assume that correlations perpendicular to the interface diverge with an exponent  $\nu_{\perp} = \alpha \nu_{\parallel}$ , where  $\alpha$  is the self-affine roughness exponent <sup>2</sup>. We simulate depinning of a self-affine domain wall in the 3D random field Ising model to determine the ratio  $\chi \sim \nu_{\perp}/\nu_{\parallel}$ . Analyzing individual avalanches show that the height  $l_{\perp}$  and width along the interface  $l_{\parallel}$  scale as  $l_{\perp} \sim l_{\parallel}^{\chi}$  with  $\chi = 0.9 \pm 0.05$ over 3 decades in systems of  $10^{10}$  spins. This value of  $\chi$  is significantly greater than  $\alpha \sim 0.67$ . Finite size scaling was used to confirm the value of  $\chi$ . The probability of reaching the top of a system of width L and height  $L^{\chi}$  as a function of  $|F - F_c| L^{1/\nu_{\parallel}}$ collapses for  $\chi = 0.9 \pm 0.03$ . We discuss the implications for other scaling relations and the conditions where  $\chi$  and  $\alpha$  should differ.

<sup>1</sup>Support provided by: DMR-1411144; NSF IGERT-0801471; ARL W911NF-12-2-0022

<sup>2</sup>O. Narayan, D. Fisher PRB 82 (1993)

Joel Clemmer Johns Hopkins University

Date submitted: 11 Nov 2016 Electronic form version 1.4