Quantum fluctuations in the Kagome spin ice state of Pr$_2$Zr$_2$O$_7$

HUIYUAN MAN, Univ of Tokyo-Kashiwanoha, JIAJIA WEN, Stanford University, NICHOLAS BUTCH, NIST Center for Neutron Research, SATORU NAKATSUJI, ISSP, Univ of Tokyo-Kashiwanoha, COLLIN BROHOLM, Johns Hopkins University, SATORU NAKATSUJI’S GROUP COLLABORATION, COLLIN BROHOLM’S GROUP COLLABORATION — While water ice and spin ice compounds such as Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ are semi-classical, low spin pyrochlores where exchange interactions prevail over dipole-dipole interactions can have substantial quantum fluctuations and perhaps realize quantum spin ice [1-3] where emergent magnetic monopoles have quantum dynamics and an artificial electromagnetism is manifest in low energy photon-like excitations. Pr$_2$Zr$_2$O$_7$ was recently found to be an excellent candidate for quantum spin ice [2]. Strong quantum fluctuations were detected in Pr$_2$Zr$_2$O$_7$ [3] but also a very strong sample variability, which is tied to the non-Kramers nature of the J=4 Pr$^{3+}$ multiplet and an underlying structural instability. We have conducted neutron scattering experiments new high quality crystals to study quantum fluctuations in Pr$_2$Zr$_2$O$_7$, with fields along [111]. At $Q = (2/3, 2/3, -4/3)$ where classical spin ice Ho$_2$Ti$_2$O$_7$ shows a pinch point, we found a peak in Pr$_2$Zr$_2$O$_7$. The quantum kagome ice state thus appears to be quite different from the classical case. [1] K. A. Ross et al., Phys. Rev. X 1 (2011) 021002. [2] K. Kimura et al., JPS Conf. Proc. 3 (2014) 014027. [3] K. Kimura et al., Nat. Commun. 4 (2013) 1934.

Huiyuan Man
Univ of Tokyo-Kashiwanoha

Date submitted: 11 Nov 2016

Electronic form version 1.4