Raising the Bose-Einstein condensation critical temperature using vacancies M.A. SOLIS, Instituto de Física, Universidad Nacional Autónoma de Mexico, J.G. MARTINEZ, J. GARCIA, Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de Mexico, M. FORTES, P. SALAS, Instituto de Física, Universidad Nacional Autónoma de Mexico, O.A. RODRIGUEZ, Posgrado en Ciencias Físicas, Universidad Nacional Autónoma de Mexico — We have studied the thermodynamic properties of an Ideal Bose gas confined within a semi-infinite box with periodic permeable multilayers [1], in particular we have calculated its BEC critical temperature and isochoric specific heat, where we have always observed a critical temperature T_c smaller than the BEC critical temperature (T_0) of an infinite homogeneous ideal Bose gas. However, when we introduce a plane vacancy, a finite gap between the ground and first excited states in the particle energy spectrum is introduced, which increases the critical temperature beyond T_0 and generates a specific heat jump at T_c. We expect that these vacancies could lead to a raise in the critical temperature of superfluids within lattice structures. [1] P. Salas, et al., PRA 82, 033632(2010); O.A. Rodríguez, et al., J. Low Temp. Phys. 183, 144 (2016); V.E. Barragan, et al., Int. J. Mod. Phys. B 30, 1650099 (2016). We acknowledge partial support from grants PAPIIT IN107616 and CONACyT 221030.