Chemical substitution study on magnetism and superconductivity in Ce$_{1-x}$Sm$_x$CoIn$_5$.1 N. POUSE, S. JANG, B. WHITE, S. RAN, M. B. MAPLE, University of California, San Diego, C. C. ALMASAN, Kent State University — We report electrical resistivity, magnetization, and specific heat measurement measurements on the Ce$_{1-x}$Sm$_x$CoIn$_5$ system for 0 \(\leq x \leq 1 \). Superconductivity in CeCoIn$_5$ is suppressed with increasing Sm concentrations up to \(x = 0.1 \), above which there is no evidence for superconductivity from measurements down to 50 mK; antiferromagnetic ordering in SmCoIn$_5$ persists deep into the Ce-rich side, and is not completely suppressed until \(x = 0.25 \). We have observed the development of a low-temperature upturn in electrical resistivity for 0.70 \(\leq x \leq 0.85 \) which is consistent with behavior for a single-ion impurity Kondo effect and suggests that the substitution of Sm for Ce causes a change of the relative strength of competing Kondo and Ruderman-Kittel-Kasuya-Yosida energy scales.

1Research at UCSD is supported by the US DOE BES under Grant No. DE-FG02-04-ER46105, the US NSF under Grant No. DMR-1206553, and research at Kent State U. is supported by NSF under Grant No. DMR-1505826.

Naveen Pouse
University of California, San Diego

Date submitted: 11 Nov 2016
Electronic form version 1.4