Abstract Submitted for the MAR17 Meeting of The American Physical Society

Chemical substitution study on magnetism and superconductivity in $Ce_{1-x}Sm_xCoIn_5$. N. POUSE, S. JANG, B. WHITE, S. RAN, M. B. MAPLE, University of California, San Diego, C. C. ALMASAN, Kent State University — We report electrical resistivity, magnetization, and specific heat measurement measurements on the $Ce_{1-x}Sm_xCoIn_5$ system for $0 \le x \le 1$. Superconductivity in CeCoIn₅ is suppressed with increasing Sm concentrations up to x = 0.1, above which there is no evidence for superconductivity from measurements down to 50 mK; antiferromagnetic ordering in SmCoIn₅ persists deep into the Ce-rich side, and is not completely suppressed until x= 0.25. We have observed the development of a low-temperature upturn in electrical resistivity for $0.70 \le$ \boldsymbol{x} < 0.85 which is consistent with behavior for a single-ion impurity Kondo effect and suggests that the substitution of Sm for Ce causes a change of the relative strength of competing Kondo and Ruderman-Kittel-Kasuya-Yosida energy scales.

¹Research at UCSD is supported by the US DOE BES under Grant No. DE-FG02-04-ER46105, the US NSF under Grant No. DMR-1206553, and research at Kent State U. is supported by NSF under Grant No. DMR-1505826.

Naveen Pouse University of California, San Diego

Date submitted: 11 Nov 2016 Electronic form version 1.4