Nonreciprocal dynamics of domain wall in ferromagnetic film

SHU ZHANG, OLEG TCHERNYSHYOV, Department of Physics, IQM, Johns Hopkins University — We model the dynamics of a domain wall in a thin ferromagnetic film with the easy axis perpendicular to the film plane. A domain wall is modeled as a string whose Lagrangian, in addition to the standard string tension and kinetic energy, possesses a Berry phase term reflecting the precessional dynamics of spins. Waves propagating left and right have different speeds on such a string. We solve the equations of motion for a domain wall driven by an external magnetic field. A sudden application of an in-plane field results in the appearance of kinks (slope discontinuities) on the domain wall, which propagate back and forth along the wall.

The research at IQM is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award DE-FG02-08ER46544.