Abstract Submitted for the MAR17 Meeting of The American Physical Society

Temperature dependence of spin-orbit torques in a bulk perpendicularly magnetized Tb_xCo_{1-x} alloy film¹ KOHEI UEDA, MAXWELL MANN, GEOFFREY BEACH, MIT — Current-driven spin-orbit torques (SOTs) in ultra-thin ferromagnet/heavy metals with strong spin orbit coupling has been shown to be efficient way for manipulating magnetization [1,2]. Damping-like (DL) SOT is most relevant to highly efficient magnetization switching due to spin Hall effect [2]. Recently, some groups have reported SOT efficiency in ferrimagnet alloy films with bulk perpendicular magnetic anisotropy, which becomes potential candidate for the futures spin-orbit device with large thermal stability [3-5]. However, mechanism of spin transport still remains questionable issues in magnetic compensated ferrimagnet alloy film strongly depending on the temperature and composition. Here, we report DL-SOT efficiency (χ_{DL}) for various temperatures in a Ta/Tb_xCo_{1-x} bi-layers film, characterized by conventional harmonic voltage measurement. As decreasing temperature, coercively field (H_c) showed an increase and decrease below 200 K, whereas the saturation magnetization $(M_{\rm s})$ does opposite behavior to the $H_{\rm c}$, since two sublattices of Co and Tb are equal in magnitude due to the magnetic compensation point ($T_{\rm M}$). Furthermore, it is found that $\chi_{\rm DL}$ showed the maximum, approaching to $T_{\rm M}$. This result is consistent with a relation that $\chi_{\rm DL}$ is inversely proportional to $M_{\rm s}$ [5].

¹NSF-ECCS-1408172

Kohei Ueda MIT

Date submitted: 11 Nov 2016

Electronic form version 1.4