Force fluctuations of non-adherent cells: effects of osmotic pressure and motor inhibition1 SAMANEH REZVANI, CHRISTOPH F. SCHMIDT, 3rd institute of Physics- Biophysics, Georg August University of Goettingen, Germany, TODD M. SQUIRES, Department of Chemical Engineering, UCSB, USA — Cells sense their micro-environment through biochemical and mechanical interactions. They can respond to stimuli by undergoing shape- and possibly volume changes. Key components in determining the mechanical response of a cell are the viscoelastic properties of the actomyosin cortex, effective surface tension, and the osmotic pressure. We use custom-designed microfluidic chambers with integrated hydrogel micro windows to be able to rapidly change solution conditions for cells without active mixing, stirring or diluting of fluid. We use biochemical inhibitors and different osmolytes and investigate the time-dependent response of individual cells. Using a dual optical trap makes it possible to probe viscoelasticity of suspended cells by active and passive microrheology to quantify the response to the various stimuli.

1SFB 937, Germany

Samaneh Rezvani

3rd institute of Physics- Biophysics, Georg August University of Goettingen, Germany

Date submitted: 11 Nov 2016

Electronic form version 1.4