MAR17-2016-020021

Abstract for an Invited Paper for the MAR17 Meeting of the American Physical Society

Defect physics as key to understanding complex battery electrode materials KHANG HOANG, North Dakota State University

In complex functional materials such as those for metal-ion battery electrodes, point defects can be vital or fatal to the performance. A detailed understanding of the formation and migration of these defects is thus required for explaining, predicting, and optimizing the materials' properties, and for rational materials design. With advances in electronic-structure methods, first-principles calculations for defects have become a powerful tool in providing such an understanding. In this talk, I will focus my discussion on defect physics vis-à-vis functional properties in mixed ionic-electronic conducting, electrode materials. Specific examples will be taken from recent work on complex transition-metal oxides. Through these examples, I will illustrate how state-of-the-art point defect calculations can serve as a study of materials response to interventions, done on purpose and in a well-controlled manner, at the electronic and atomic level, and how such a study can provide a fundamental understanding of the materials and help uncover new science.