Abstract for an Invited Paper
for the MAR17 Meeting of
the American Physical Society

Dynamics of simultaneously measured non-commuting observables
SHAY HACOHEN-GOURGY, Quantum Nanoelectronics Laboratory, Department of Physics, University of California, Berkeley CA 94720, USA.

In quantum mechanics, measurement restores a classical notion of reality via collapse of the wavefunction, which yields a precisely defined outcome. On the other hand, the Heisenberg uncertainty principle dictates that incompatible observables, such as position and momentum, cannot both take on arbitrarily precise values. But how does a wavefunction evolve when two such quantities are probed simultaneously, and how does the uncertainty principle dynamically inhibit precise measurement outcomes? We present a novel detection scheme that allows control over the measurement operators of multiple readout channels of a superconducting qubit. We will show how the uncertainty principle governs the dynamics of the state by enforcing a lower bound on the measurement-induced disturbance, inhibiting wavefunction collapse and consequently leading to persistent diffusion. We will also present the ramifications of this scheme in the context of quantum control and metrology applications.

1This work was supported by the Army Research Office and the Air Force Research Laboratory
2Addition affiliation - Center for Quantum Coherent Science, University of California, Berkeley CA 94720, USA.