2D dichalcogenide electronic materials and devices
ANDRAS KIS, EPFL

The discovery of graphene marked the start of research in 2D electronic materials which was expanded in new directions with MoS2 and other layered semiconducting materials. They have a wide range of promising potential applications, including those in digital electronics, optoelectronics and flexible devices. Combining 2D materials in heterostructures can increase their reach even further. In my talk, I will present our recent efforts in growing 2D semiconducting transition metal dichalcogenides (TMDCs) and heterostructures using a variety of techniques such as CVD and MBE, starting from epitaxial growth of MoS2 on sapphire with a high degree of control over lattice orientation. Next, I will show our work on atomically thin rhenium disulphide (ReS2) liquid-electrolyte gated transistors with atypical behaviour at high charge densities related to the peculiar band structure of this material. I will finish by presenting new results on spin/valley transport in semiconducting monolayer TMDC materials.