Manipulating Majorana Bound States with Tunable Magnetic Textures

ALEX MATOS ABIAGUE, University at Buffalo

In condensed-matter systems Majorana bound states (MBSs) are emergent quasiparticles obeying non-Abelian statistics. While realizing the non-Abelian braiding statistics would provide both an ultimate proof for MBSs existence and a key element for fault-tolerant topological quantum computing, even theoretical schemes imply a significant complexity to implement such braiding. The first experimental evidences of MBSs formation were measured in one-dimensional (1D) systems [1]. However, since braiding statistics are ill-defined in 1D, complex wire networks must be used for directly probing the non-Abelian character of the MBSs [2]. In this talk I will discuss the possibility of creating and manipulating MBSs in two-dimensional (2D) systems by using tunable magnetic textures generated by an array of magnetic tunnel junctions (MTJs) located on a 2D superconductor-semiconductor heterostructure [3]. Magnetic textures can provide not only effective spin-orbit and Zeeman fields [4] -two important ingredients for the creation of MBSs- but also spatial confinement [5]. The underlying magnetic texture produced by the MTJs array leads to the formation of effective topological wires supporting MBSs formation. The effective wires can be re-shaped and re-oriented by properly changing the magnetic texture, allowing for the transportation of the MBSs in 2D [5]. I will then show how the proposed platform can be used to measure the non-Abelian statistics of MBSs through braiding and discuss the main challenges regarding materials, scalability, and detection. The effects of the coexistence of native and magnetically-induced spin-orbit fields on the MBSs as well as the possibility of using other magnetic textures will also be addressed.


This work was done in collaboration with G. L. Fatin, B. Scharf, and I. Zutic and was supported by U.S. DOE, Office of Science BES, under Award No. DE-SC0004890 and U.S. ONR Grant No. N000141310754.