MAR17-2016-020123

Abstract for an Invited Paper for the MAR17 Meeting of the American Physical Society

Anisotropic physical properties of single phase, single-crystalline $CaKFe_4As_4^1$

SERGEY L. BUD'KO, Ames Laboratory US DOE, and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

An overview of the synthesis and anisotropic thermodynamic and transport properties of single-crystalline, single-phase CaKFe₄As₄ will be presented [1]. The samples were grown out of a high-temperature, quaternary melt. Temperaturedependent measurements of x-ray diffraction, anisotropic electrical resistivity, elastoresistivity, thermoelectric power, Hall effect, magnetization, specific heat, and ⁵⁷Fe Mössbauer spectroscopy measurements, combined with field-dependent measurements of electrical resistivity and field and pressure-dependent measurements of magnetization indicate that CaKFe₄As₄ is an ordered, stoichiometric, Fe-based superconductor with a superconducting critical temperature, $T_c = 35.0 \pm 0.2$ K. Other than superconductivity, there is no indication of any other phase transition for $1.8K \leq T \leq 300$ K. All of these thermodynamic and transport data reveal striking similarities to those found for optimally or slightly overdoped (Ba_{1x}K_x)Fe₂As₂, suggesting that stoichiometric CaKFe₄As₄ is intrinsically close to what is referred to as optimally-doped on a generalized phase diagram for Fe-based superconductors. The anisotropic superconducting upper critical field, Hc2(T), of CaKFe₄As₄, determined up to ~ 65 T will be discussed in some detail. A comparison with CaFe₂As₂ and KFe₂As₂ will be presented.

1. W. R. Meier, T. Kong, U. S. Kaluarachchi, V. Taufour, N. H. Jo, G. Drachuck, A. E. Böhmer, S. M. Saunders, A. Sapkota, A. Kreyssig, M. A. Tanatar, R. Prozorov, A. I. Goldman, Fedor F. Balakirev, Alex Gurevich, S. L. Bud'ko, and P. C. Canfield, Phys. Rev. B 94, 064501 (2016).

¹Supported by US DOE: Contracts DE-AC02-07CH11358 (Ames) and DE-AC02-06CH11357 (APS - ANL), Science at 100 T Project (NHMFL - LANL); Gordon and Betty Moore Foundation EPiQS Initiative Grant GBMF4411 (Ames); NSF Grant No. DMR-1157490 (NHMFL).