Abstract Submitted for the MAR17 Meeting of The American Physical Society

Conformation-Specific Infrared and Ultraviolet Spectroscopy of Cold $[YAPAA+H]^+$ and $[YGPAA+H]^+$ Ions¹ ANDREW DEBLASE, CHRISTOPHER HARRILAL, JOHN LAWLER, NICOLE BURKE², SCOTT MCLUCKEY, ZWIER TIMOTHY, Purdue Univ — Incorporation of the unnatural D-proline stereoisomer into a peptide sequence is a typical strategy to synthesize model β -hairpin loops. Using conformation-specific IR and UV spectroscopy of cold $(\approx 10 \text{ K})$ gas-phase ions, we unravel the inherent conformational preferences of the ^DP and ^LP diastereomers in the protonated peptide [YAPAA+H]⁺ because only intramolecular interactions are possible in this isolated regime. Consistent with the solution phase studies, one of the conformers of $[YA^{D}PAA+H]^{+}$ is folded into a β hairpin turn. However, a second predominant γ -turn conformer family is identified. The $[YA^LPAA+H]^+$ stereoisomer discourages β -hairpin formation. We show that the trans $(^{D}P) \rightarrow cis$ (^{L}P) isomerization is sterically driven and can be reversed by substituting [YG^LPAA+H]⁺ for [YA^LPAA+H]⁺. Therefore, we provide a basis for understanding residue-specific alterations in the potential energy surface and reveal new insights into the origin of β -hairpin formation from the bottom-up.

¹National Science Foundation (NSF CHE 1213289) and the U.S. Department of Energy (Office of Basic Energy Sciences under Award Number FG02-00ER15105) ²Current Affiliation: Kellog's

> Andrew DeBlase Purdue Univ

Date submitted: 07 Jan 2017

Electronic form version 1.4