Abstract Submitted for the MAR17 Meeting of The American Physical Society

A theory of nonequilibrium steady states in quantum chaotic systems¹ PEI WANG, Department of Physics, Zhejiang Normal University — Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system, there exist some initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix $\hat{\rho}$ of these states displays a universal structure. Suppose that α and β are different eigenstates of the Hamiltonian with energies E_{α} and E_{β} , respectively. $\langle \alpha | \hat{\rho} | \beta \rangle$ behaves as a random number which approximately follows the Laplace distribution with zero mean. In thermodynamic limit, the variance of $\langle \alpha | \hat{\rho} | \beta \rangle$ is a smooth function of $|E_{\alpha} - E_{\beta}|$, scaling as $1/|E_{\alpha} - E_{\beta}|^2$ in the limit $|E_{\alpha} - E_{\beta}| \rightarrow 0$. If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis implies the eigenstate thermalization hypothesis (ETH) in a bipartite system.

¹NSFC11304280

Pei Wang Department of Physics, Zhejiang Normal University

Date submitted: 16 Dec 2016

Electronic form version 1.4