Abstract Submitted for the MAR17 Meeting of The American Physical Society

Temperature-dependent electron transport mechanism in CS/PEO and CS/PANiES composites.¹ CESAR NIEVES, Univ of Puerto Rico - Humacao, LUIS MARTINEZ, The University of Texas at El Paso, IDALIA RAMOS, ANAMARIS MELENDEZ, NATALYA ZIMBOVSKAYA, MAR-GARITA ORTIZ, NICHOLAS PINTO, Univ of Puerto Rico - Humacao — Carbon spheres (CS) were prepared via hydrothermal method using an aqueous solution of sucrose and heated at 400C. The spheres were thermally annealed in N_2 at 800C to increase the conductivity due the elimination of functional groups on the surface of the CS. Electron transport as function of temperature was studied using an insulating (polyethylene oxide-PEO) and a conducting (polyaniline-PANiES) polymer. Electrical characterizations of the composites were carry out showing Ohmic currentvoltage response and temperature-dependent conductivity in the range of 80K to 300 K. The dependence of conductivity on temperature was theoretically analyzed to determine predominating mechanisms of electron transport. A conductivity maxima at 258K was observed in the CS/PEO composite but was absent in the CS/PANiES composite. While thermally induced-tunneling and thermal activation are responsible for electron transport in CS/PEO, variable range hopping (VRH), thermally induced-tunneling, and thermal activation are responsible for electron transport in CS/PANiES composite.

¹This work was supported by NSF-DM-1523463 and NSF-DMR-RUI-1360772

Cesar Nieves Univ of Puerto Rico - Humacao

Date submitted: 16 Dec 2016

Electronic form version 1.4