Evolution of crystallization and magnetic phase transition in Cu$_{1-x}$Zn$_x$Fe$_2$O$_4$ studied by neutron powder diffraction. FENFEN CHANG, China Spallation Neutron Source, Dongguan, Guangdong Province, MAXIM AVDEEV, GUOCHU DENG, JAMES HESTER, The Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia, XIAOLIN WANG, Institute for superconducting and electronic materials, University of Wollongong, NSW 2500, Australia, CLEMENS ULRICH, The School of Physics, The University of New South Wales, Sydney NSW 2052, Australia — High resolution and high intensity neutron powder diffraction were applied to study the crystallographic and magnetic phase transition in Cu$_{1-x}$Zn$_x$Fe$_2$O$_4$ from 4 K to 750 K. Structural phase transition from cubic to tetragonal phase was observed in CuFe$_2$O$_4$. Ferrimagnetic order was observed in CuFe$_2$O$_4$ and short-range antiferromagnetic scattering was observed below 10 K in cubic ZnFe$_2$O$_4$ which is strongly restrained by addition of slightly amount of Cu$^{2+}$ ions. Upon doping, ferromagnetic order temperature was gradually reduced from 789 K. Collinear spin setting was observed and no indication of frustration was found even up to doping rate of x = 0.6. Highly frustrated Cu$_{0.04}$Zn$_{0.96}$Fe$_2$O$_4$ and ZnFe$_2$O$_4$ behave short-range antiferromagnetic order, induced by the competing between ferromagnetic interaction from first-nearest neighbor and antiferromagnetic interaction from the third-nearest neighbor in tetrahedron formed by Fe ions on B sites.

Fenfen Chang
China Spallation Neutron Source, Dongguan, Guangdong Province

Date submitted: 07 Jan 2017 Electronic form version 1.4