Abstract Submitted for the MAR17 Meeting of The American Physical Society

Molecular dynamics simulations of H_2O , NO_2 , and N_2 mixtures on graphene.¹ HAWAZIN ALGHAMDI, SILVINA GATICA, Department of Physics and Astronomy, Howard University — In this work we study the adsorption of mixtures of H_2O , NO_2 , and N_2 on graphene using the method of Molecular Dynamics. We run the simulations at constant temperatures from 100K to 230K. The H_2O and NO_2 molecules are modeled as a rigid 3-point systems and N_2 is considered a spherical super-atom with Lenard-Jones interactions. The substrate is a rigid graphene layer located at the bottom of the simulation cell. The LJ parameters of interaction between the molecules and the graphene are calculated by fitting the atomistic pair-wise sum of carbon-atom interactions with the 9-3 potential. We calculate the selectivity of NO_2/N_2 and H_2O/N_2 on graphene to test the capability of graphene to separate nitrogen dioxide or water from air.

¹HA acknowledge support from the Saudi Arabia Cultural Mission

Silvina Gatica Department of Physics and Astronomy, Howard University

Date submitted: 06 Jan 2017

Electronic form version 1.4